您当前的位置:首页 > 新闻动态
行业|碳中和:能源技术新革命
发表时间:2022-05-18     阅读次数:    


“碳中和”作为未来四十年中国的一项重大国策,相关讨论一直热度不减。但“碳中和”到底意味着什么?会对哪些行业产生什么影响?对个人来说有什么样的机遇可以把握?在我们看来,只有全面、系统地梳理相关概念,并把握了各个要素之间的脉络关系,才能对“碳中和”有高屋建瓴的认知。我们将以三个问题为切入点,帮助大家认清相关讨论落在这盘大棋中的何处,清晰地看到一个“碳中和”的全景图谱。


#碳中和的背景、意义和实现路径


1.1 背景:全球能源结构中,化石能源占据绝对主流


在工业革命之前,人类主要的能源来源是自然界的木材。在1840年,煤炭在世界能源消耗中的占比首次超过5%。这个比例在1900年才达到50%。后来石油和天然气逐渐被广泛应用,成为与煤炭一样的主流化石能源。

在过去的三十多年里,全球能源消耗量基本保持逐年增长的趋势,但化石能源在人类的能源结构中占比基本保持稳定。当前,化石能源占全球能源消耗的85%左右;能源消耗占比第二的是水电,约占7%;核能排名第三,约占4.5%;太阳能、风能、潮汐能、地热能、现代生物质能全等加总在一起,约占3.5%。我们必须清醒地认识到,备受关注的新能源在全球的能源结构中体量小得可怜,距离成为“主流能源”还有相当长的距离。



1.2 人类活动导致全球变暖证据确凿,后果严重



第一次工业革命以来,人类产生并排放了大量的温室气体。根据中科院杜祥琬院士的说法,全世界温室气体排放主要是二氧化碳,占比约74%。二氧化碳的大量排放直接推高了全球地表的平均温度。根据联合国政府间气候变化专门委员会(IPCC)的估算,和工业革命前(1850-1900年)相比,2017年全球平均气温已经上升了约1℃。如果持续目前的速度,那每过十年,全球就又会变暖0.2℃,到2040年左右将升温1.5℃。

全球气候变暖带来的一大直接后果是海平面上升。根据估算,如果全球平均海平面上升50cm,纽约、上海、东京等特大型城市圈将受到严重影响。除此之外,IPCC经过评估后发现,全球气候变化还可能会造成包括水资源短缺、农林牧渔食物减产、极端天气频发(洪水、飓风等)、传染病流行等一系列后果,对生态环境和人类社会造成巨大的影响。


1.3 《巴黎协定》制定目标 中国碳中和时间紧迫


为应对气候变暖,人类需要设法在宏观层面实现“碳的零排放”,即“碳中和”。在2015年12月举行的第21届缔约方会议(COP21)上,包括我国在内的195个国家签署了《巴黎协定》,确立了“把全球平均气温升幅控制在工业化前水平以上低于2°C之内,并努力将气温升幅限制在工业化前水平以上1.5°C之内”的目标。

中国在人类“碳中和”进程中扮演着不可或缺的作用。作为世界上最大的能源消费国和碳排放国,中国的二氧化碳的排放量占全球总量的三分之一,温室气体的排放量约占全球总量的四分之一。中国现有的排放密集型基础设施如果继续以相同方式运作,到2060年预计将排放1750亿吨的二氧化碳。对“将全球温度上升幅度限制在1.5℃”这个目标来说,排放1750亿吨二氧化碳意味着中国占用了全球排放预算的三分之一。

2020年,中国宣布了自己的“双碳目标”:2030年前碳排放达峰,2060年前实现碳中和。这个目标也被写进了《国民经济和社会发展第十四个五年规划和2035年远景目标纲要》。我们必须要看到,中国从排放达峰到净零排放的时间比美国、法国、德国等国家更短。主动承担这么艰巨的任务,不仅提升了我们国家在国际舞台上的形象,也为中国提供了政治博弈的工具:在特朗普任期内,由于美国退出了《巴黎协定》,欧盟作为国际气候谈判最主要的推动者,面临着巨大的压力和挑战。我国提出碳中和的目标,实际上侧面响应了欧盟的主张,拉近了和欧盟的关系。今后在美、欧、中三方博弈时,碳中和很可能会是一张中国为获得欧盟支持而可打的牌。


1.4 中国有必要举全国之力来实现碳中和


碳中和绝不仅是为了全人类的福祉,以及为我国提供政治博弈手段。对中国来说,实现碳中和有重大且长远的价值。


(1) 保障能源安全
“富煤、贫油、少气”的基本国情决定了我国对石油和天然气对外依存度很高。根据IEA和BP统计,中国已于2017年超过美国成为最大的石油进口国,并于2018年取代日本成为最大的天然气净进口国。2020年,中国消费的石油和天然气中分别有超过70%和45%来自进口。一旦像马六甲海峡这样的运输通道被封锁,我国的能源安全就会受到严重威胁。

化石能源的分布情况和储量是中国不能决定的,但如果能用风、光等全球分布相对均衡的新能源取代化石能源,将打破我国资源过度依赖海外进口的现状。而利用这些新能源的关键,取决于技术水平和制造业能力。未来在新能源利用领域的技术成熟后,中国有望从“化石能源进口国”转型为“新能源生产能力出口国”。在过去十年,中国在许多清洁能源技术的制造领域已经占据全球领先地位,加快能源转型将巩固中国在全球清洁能源技术价值链中的地位。

(2)提供发展动能


索洛模型(Robert Solow Model)常被用于解释经济增长、帮助国家寻找发展动能。在索洛模型中,“技术增长率”(即“全要素生产率“,TFP)对经济增长有着持续且巨大的价值。根据北京大学光华管理学院院长刘俏教授的测算,在1980年到2010年,中国的“技术增长率”维持在4%~5%的水平,但在2010年到2018年之间,随着中国已经逐渐完成工业化,“技术增长率”下降到了2%。
在《碳中和与中国经济增长逻辑》一文中,刘俏认为,“碳中和”将促使中国在很多的底层技术上进行研发投入,从而为中国未来的经济发展提供持续动能。与“再工业化”(产业的数字化转型)、“新基建”(再工业化所需的基础设施)、“更彻底的改革开放”等其他选项相比,刘俏等学者认为,碳中和“是新发展阶段推动全要素生产率提升的最大动能”,能带来更大的“经济社会系统性的深刻变革”。

事实上,中国已经开始在“十四五”规划中制定具体的行动。根据国务院第十四个五年规划(2021-2025年),中国力争将下一代信息技术、生物技术、新能源、新材料、高端设备、新能源车辆等战略性新兴产业在GDP中的份额从2019年的12%左右提高到2025年的17%。


#细分领域现状及趋势


2.1 海陆并举,解决东西部风能资源与用电需求不匹配的问题


1. 陆上风电与海上风电
中国的陆上风能资源的分布极其不均匀。我国风能集中分布在华北、东北和西北地区,主要是在内蒙古、宁夏、陕西、甘肃、新疆、黑龙江和吉林等省份。这些地方地广人稀,电力消费市场不大。而经济发达地区的风能资源很匮乏,比如用电量占到全国70%以上的东部地区和南方地区,风能密度只有内蒙古地区的不到三分之一。而且在这些地方,适合发展风电的特殊地形(比如山地)现在已经基本上被完全使用。

2021年2月,国家林业和草原局颁布了《关于规范风电厂项目建设用地的通知》,明确提出禁止风电项目使用重点林区林地。因此,陆上集中式风电项目的开发难度越来越大。解决东西部风能资源与用电需求不匹配的问题有两种思路:一是依靠后文介绍的特高压输电技术,实现“西电东送”,另一种是发展海上风电技术。

截至2021年6月底,我国海上风电的装机容量超过11GW,超过英国成为全球第一。海上风电有三个优势:储量大、效率高,就近便利。


储量大:根据全国900多个气象站的测算,我国近海区域可开发的风能储量大概有7.5亿kW,是陆地风能资源的近3倍。如果这部分资源能得到充分利用,风电是有可能成为主力的;

效率高:由于没有山脉阻挡,海上风机每年运行的有效时间高达4000小时以上,效率比陆上风机高出20%~40%。而且海上风电场远离陆地,不占用土地,也不必担心噪音、电磁波等对居民的影响,大规模开发的副作用就小;

就近便利:东南沿海的浙江、福建、广东正好是用电大省。过去它们长期需要外省的电力输入,现在直接就近建设海上风电,既解决了用电问题,又缓解了电网压力。

目前广东、江苏、浙江等沿海省份在出台的能源“十四五”规划中,都把海上风电作为未来的重点发展方向。如果未来风电要成为新能源发电的主力,发展海上风电的局势势不可挡。


2. 降低风电成本的机会
尽管风电是充满潜力的新能源,风电的发展因为一些技术原因,无法进一步降低成本、推广应用。归纳起来,我们认为如下四个方面存在着大量值得探索新的机会(其中前后两者主要针对海上风电)。



2.2 核能:新一代核电技术落地应用


从目前来看,中国对核电的态度属于支持其有序、稳健地发展。截至2020年年底,我国在运营核电机组48台,总装机容量约为50GW,位居全球第三;在建核电机组14台,总装机容量15.5GW,位居全球第一。预计到2050年,我国的核电装机容量将超过300GW,总发电量超过2000TW·h。

核电的应用和发展主要面临“选址条件苛刻”、“核废料处理困难”和“核泄漏风险难以规避”三大问题。针对这三个问题,各国开始探索第四代核电技术。第四代核电技术让反应堆实现自我控制核泄漏,并选用氟化盐等物质替代水,解决对水的依赖问题。在核废料的处理上,第四代核电技术有希望实现废料的循环利用,从而大大减少废料的总量。
在2021年,我国在甘肃武威建成了世界第一座钍基熔盐反应堆,并于2021年12月让山东荣成的华能石岛湾高温气冷堆核电站成功并网发电。这两座新型反应堆都使用了第四代核电技术。不过由于第四代核电技术仍然不成熟,短期内核能难以成为主流能源形式。这一点在《中国2030年能源电力发展规划研究及2060年展望》中也有体现:到2060年,核电装机容量占比仅为3.1%(2020年占比为2.3%)。



根据中国光伏行业协会(CPIA)的预测,保守情况下 2025 年我国新增 光伏装机容量将达到 90GW,相比 2020 年 48.2GW,复合增速为 13.3%。


而 2025 年全球新增光伏装机容量为 270GW,相比 2020 年 130GW,复合 增速为 15.7%。在而乐观情况下,2025 年我国新增光伏装机容量将达到 110GW,相比 2020 年复合增速将达到 17.9%。全球新增光伏装机容量将 达到 330GW,相比 2020 年的复合增速将达到 20.5%。


2.3 水能:开发速度明显放缓,未来新增开发空间有限


水力发电技术成熟、运行灵活,水电也一直是我国电力结构的重要组成部分。2020年,我国水电发电量超过1300TW·h,占总发电量的15%以上。目前水电的开发速度已经明显降低,未来的新增开发空间并不是很大,主要由于以下两个因素:


建国后我国进行了长时期的水电建设,水电资源已经得到了较充分的开发;

水电项目需要考虑防洪、水资源配置、移民安置等问题,周期长、难度大;


此外,我国的水电开发技术成熟且领先。相较于投入风光核等全球新兴技术,大力发展水电对中国经济增长的推动作用有限。根据清华大学的相关预测,到2050年我国水电发电量预计在1500TW·h左右,基本与现在持平。IEA估计,2020-2060年间,中国水力发电量仅仅将增长45%。水电产能主要集中在华中和南方的云南省。






 
上一篇:中心|国创汽车轻量化研究院与北京化工大学、利德东方达成战略合作协议
下一篇:速览|一季度全球新能源车销量突破200万辆,上海将新建20万个充电设施......
  • 公司地址

    山东省淄博市张店区华光路366号科创大厦

  • 联系我们

    固话:
    手机:

  • 电子邮箱

    nevczibo@nevczibo.com.cn